Come estrarre dati da WebElements: Guida ai dati della Tavola Periodica

Estrai dati precisi sugli elementi chimici da WebElements. Ottieni pesi atomici, proprietà fisiche e cronologia delle scoperte per ricerca e applicazioni AI.

Copertura:Global
Dati Disponibili6 campi
TitoloDescrizioneImmaginiInfo VenditoreCategorieAttributi
Tutti i Campi Estraibili
Numero AtomicoSimbolo dell'ElementoNome dell'ElementoPeso AtomicoCategoria dell'ElementoPeriodoNumero del GruppoBloccoConfigurazione ElettronicaPunto di FusionePunto di EbollizioneDensitàData di ScopertaScopritoreRaggio CovalenteRaggio AtomicoPrima Energia di IonizzazioneConduttività TermicaStruttura CristallinaAbbondanza
Requisiti Tecnici
HTML Statico
Senza Login
Senza Paginazione
Nessuna API Ufficiale

Informazioni Su WebElements

Scopri cosa offre WebElements e quali dati preziosi possono essere estratti.

WebElements è la principale tavola periodica online, gestita da Mark Winter presso l'Università di Sheffield. Lanciata nel 1993, è stata la prima tavola periodica sul World Wide Web e da allora è diventata una risorsa autorevole per studenti, accademici e chimici professionisti. Il sito offre dati strutturati e approfonditi su ogni elemento chimico conosciuto, dai pesi atomici standard alle complesse configurazioni elettroniche.

Il valore dello scraping di WebElements risiede nei suoi dati scientifici di alta qualità e sottoposti a revisione paritaria. Per gli sviluppatori che creano strumenti didattici, i ricercatori che conducono analisi delle tendenze nella tavola periodica o gli scienziati dei materiali che addestrano model di machine learning, WebElements fornisce una fonte di verità affidabile e tecnicamente ricca, difficile da aggregare manualmente.

Informazioni Su WebElements

Perché Fare Scraping di WebElements?

Scopri il valore commerciale e i casi d'uso per l'estrazione dati da WebElements.

Raccolta di dati scientifici di alta qualità per lo sviluppo di strumenti educativi.

Aggregazione delle proprietà degli elementi per la ricerca nella scienza dei materiali e model di machine learning.

Popolamento automatizzato dei sistemi di inventario di laboratorio con specifiche chimiche.

Analisi storica delle scoperte degli elementi e del progresso scientifico.

Creazione di dataset completi sulle proprietà chimiche per pubblicazioni accademiche.

Sfide dello Scraping

Sfide tecniche che potresti incontrare durante lo scraping di WebElements.

I dati sono distribuiti su più sottopagine per elemento (es. /history, /compounds).

I vecchi layout HTML basati su tabelle richiedono una logica di selezione precisa.

Confusione del nome di dominio con la classe 'WebElement' di Selenium quando si cerca supporto.

Scraping di WebElements con l'IA

Nessun codice richiesto. Estrai dati in minuti con l'automazione basata sull'IA.

Come Funziona

1

Descrivi ciò di cui hai bisogno

Di' all'IA quali dati vuoi estrarre da WebElements. Scrivi semplicemente in linguaggio naturale — nessun codice o selettore necessario.

2

L'IA estrae i dati

La nostra intelligenza artificiale naviga WebElements, gestisce contenuti dinamici ed estrae esattamente ciò che hai richiesto.

3

Ottieni i tuoi dati

Ricevi dati puliti e strutturati pronti per l'esportazione in CSV, JSON o da inviare direttamente alle tue applicazioni.

Perché Usare l'IA per lo Scraping

Navigazione senza codice attraverso strutture gerarchiche di elementi.
Gestisce automaticamente l'estrazione di tabelle scientifiche complesse.
L'esecuzione in cloud consente l'estrazione di dataset completi senza tempi di inattività locali.
Facile esportazione in CSV/JSON per l'uso diretto in strumenti di analisi scientifica.
Il monitoraggio pianificato può rilevare aggiornamenti ai dati degli elementi confermati.
Nessuna carta di credito richiestaPiano gratuito disponibileNessuna configurazione necessaria

L'IA rende facile lo scraping di WebElements senza scrivere codice. La nostra piattaforma basata sull'intelligenza artificiale capisce quali dati vuoi — descrivili in linguaggio naturale e l'IA li estrae automaticamente.

How to scrape with AI:
  1. Descrivi ciò di cui hai bisogno: Di' all'IA quali dati vuoi estrarre da WebElements. Scrivi semplicemente in linguaggio naturale — nessun codice o selettore necessario.
  2. L'IA estrae i dati: La nostra intelligenza artificiale naviga WebElements, gestisce contenuti dinamici ed estrae esattamente ciò che hai richiesto.
  3. Ottieni i tuoi dati: Ricevi dati puliti e strutturati pronti per l'esportazione in CSV, JSON o da inviare direttamente alle tue applicazioni.
Why use AI for scraping:
  • Navigazione senza codice attraverso strutture gerarchiche di elementi.
  • Gestisce automaticamente l'estrazione di tabelle scientifiche complesse.
  • L'esecuzione in cloud consente l'estrazione di dataset completi senza tempi di inattività locali.
  • Facile esportazione in CSV/JSON per l'uso diretto in strumenti di analisi scientifica.
  • Il monitoraggio pianificato può rilevare aggiornamenti ai dati degli elementi confermati.

Scraper Web No-Code per WebElements

Alternative point-and-click allo scraping alimentato da IA

Diversi strumenti no-code come Browse.ai, Octoparse, Axiom e ParseHub possono aiutarti a fare scraping di WebElements senza scrivere codice. Questi strumenti usano interfacce visive per selezionare i dati, anche se possono avere difficoltà con contenuti dinamici complessi o misure anti-bot.

Workflow Tipico con Strumenti No-Code

1
Installare l'estensione del browser o registrarsi sulla piattaforma
2
Navigare verso il sito web target e aprire lo strumento
3
Selezionare con point-and-click gli elementi dati da estrarre
4
Configurare i selettori CSS per ogni campo dati
5
Impostare le regole di paginazione per lo scraping di più pagine
6
Gestire i CAPTCHA (spesso richiede risoluzione manuale)
7
Configurare la pianificazione per le esecuzioni automatiche
8
Esportare i dati in CSV, JSON o collegare tramite API

Sfide Comuni

Curva di apprendimento

Comprendere selettori e logica di estrazione richiede tempo

I selettori si rompono

Le modifiche al sito web possono rompere l'intero flusso di lavoro

Problemi con contenuti dinamici

I siti con molto JavaScript richiedono soluzioni complesse

Limitazioni CAPTCHA

La maggior parte degli strumenti richiede intervento manuale per i CAPTCHA

Blocco IP

Lo scraping aggressivo può portare al blocco del tuo IP

Scraper Web No-Code per WebElements

Diversi strumenti no-code come Browse.ai, Octoparse, Axiom e ParseHub possono aiutarti a fare scraping di WebElements senza scrivere codice. Questi strumenti usano interfacce visive per selezionare i dati, anche se possono avere difficoltà con contenuti dinamici complessi o misure anti-bot.

Workflow Tipico con Strumenti No-Code
  1. Installare l'estensione del browser o registrarsi sulla piattaforma
  2. Navigare verso il sito web target e aprire lo strumento
  3. Selezionare con point-and-click gli elementi dati da estrarre
  4. Configurare i selettori CSS per ogni campo dati
  5. Impostare le regole di paginazione per lo scraping di più pagine
  6. Gestire i CAPTCHA (spesso richiede risoluzione manuale)
  7. Configurare la pianificazione per le esecuzioni automatiche
  8. Esportare i dati in CSV, JSON o collegare tramite API
Sfide Comuni
  • Curva di apprendimento: Comprendere selettori e logica di estrazione richiede tempo
  • I selettori si rompono: Le modifiche al sito web possono rompere l'intero flusso di lavoro
  • Problemi con contenuti dinamici: I siti con molto JavaScript richiedono soluzioni complesse
  • Limitazioni CAPTCHA: La maggior parte degli strumenti richiede intervento manuale per i CAPTCHA
  • Blocco IP: Lo scraping aggressivo può portare al blocco del tuo IP

Esempi di Codice

import requests
from bs4 import BeautifulSoup
import time

# Target URL for a specific element (e.g., Gold)
url = 'https://www.webelements.com/gold/'
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'}

def scrape_element(element_url):
    try:
        response = requests.get(element_url, headers=headers)
        response.raise_for_status()
        soup = BeautifulSoup(response.text, 'html.parser')
        
        # Extracting the element name from the H1 tag
        name = soup.find('h1').get_text().strip()
        
        # Extracting Atomic Number using table label logic
        atomic_number = soup.find('th', string=lambda s: s and 'Atomic number' in s).find_next('td').text.strip()
        
        print(f'Element: {name}, Atomic Number: {atomic_number}')
    except Exception as e:
        print(f'An error occurred: {e}')

# Following robots.txt recommendations
time.sleep(1)
scrape_element(url)

Quando Usare

Ideale per pagine HTML statiche con JavaScript minimo. Perfetto per blog, siti di notizie e pagine prodotto e-commerce semplici.

Vantaggi

  • Esecuzione più veloce (senza overhead del browser)
  • Consumo risorse minimo
  • Facile da parallelizzare con asyncio
  • Ottimo per API e pagine statiche

Limitazioni

  • Non può eseguire JavaScript
  • Fallisce su SPA e contenuti dinamici
  • Può avere difficoltà con sistemi anti-bot complessi

Come Fare Scraping di WebElements con Codice

Python + Requests
import requests
from bs4 import BeautifulSoup
import time

# Target URL for a specific element (e.g., Gold)
url = 'https://www.webelements.com/gold/'
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'}

def scrape_element(element_url):
    try:
        response = requests.get(element_url, headers=headers)
        response.raise_for_status()
        soup = BeautifulSoup(response.text, 'html.parser')
        
        # Extracting the element name from the H1 tag
        name = soup.find('h1').get_text().strip()
        
        # Extracting Atomic Number using table label logic
        atomic_number = soup.find('th', string=lambda s: s and 'Atomic number' in s).find_next('td').text.strip()
        
        print(f'Element: {name}, Atomic Number: {atomic_number}')
    except Exception as e:
        print(f'An error occurred: {e}')

# Following robots.txt recommendations
time.sleep(1)
scrape_element(url)
Python + Playwright
from playwright.sync_api import sync_playwright

def run():
    with sync_playwright() as p:
        browser = p.chromium.launch(headless=True)
        page = browser.new_page()
        # Elements are linked from the main periodic table
        page.goto('https://www.webelements.com/iron/')
        
        # Wait for the property table to be present
        page.wait_for_selector('table')
        
        element_data = {
            'name': page.inner_text('h1'),
            'density': page.locator('th:has-text("Density") + td').inner_text().strip()
        }
        
        print(element_data)
        browser.close()

run()
Python + Scrapy
import scrapy

class ElementsSpider(scrapy.Spider):
    name = 'elements'
    start_urls = ['https://www.webelements.com/']

    def parse(self, response):
        # Follow every element link in the periodic table
        for link in response.css('table a[title]::attr(href)'):
            yield response.follow(link, self.parse_element)

    def parse_element(self, response):
        yield {
            'name': response.css('h1::text').get().strip(),
            'symbol': response.xpath('//th[contains(text(), "Symbol")]/following-sibling::td/text()').get().strip(),
            'atomic_number': response.xpath('//th[contains(text(), "Atomic number")]/following-sibling::td/text()').get().strip(),
        }
Node.js + Puppeteer
const puppeteer = require('puppeteer');

(async () => {
  const browser = await puppeteer.launch();
  const page = await browser.newPage();
  await page.goto('https://www.webelements.com/silver/');

  const data = await page.evaluate(() => {
    const name = document.querySelector('h1').innerText;
    const meltingPoint = Array.from(document.querySelectorAll('th'))
      .find(el => el.textContent.includes('Melting point'))
      ?.nextElementSibling.innerText;
    return { name, meltingPoint };
  });

  console.log('Extracted Data:', data);
  await browser.close();
})();

Cosa Puoi Fare Con I Dati di WebElements

Esplora applicazioni pratiche e insight dai dati di WebElements.

Addestramento AI per la Scienza dei Materiali

Addestramento di model di machine learning per prevedere le proprietà di nuove leghe basandosi sugli attributi elementari.

Come implementare:

  1. 1Estrai le proprietà fisiche di tutti gli elementi metallici.
  2. 2Pulisci e normalizza i valori come densità e punti di fusione.
  3. 3Inserisci i dati in model di regressione o predittivi per i materiali.
  4. 4Verifica le previsioni rispetto ai dati sperimentali esistenti sulle leghe.

Usa Automatio per estrarre dati da WebElements e costruire queste applicazioni senza scrivere codice.

Cosa Puoi Fare Con I Dati di WebElements

  • Addestramento AI per la Scienza dei Materiali

    Addestramento di model di machine learning per prevedere le proprietà di nuove leghe basandosi sugli attributi elementari.

    1. Estrai le proprietà fisiche di tutti gli elementi metallici.
    2. Pulisci e normalizza i valori come densità e punti di fusione.
    3. Inserisci i dati in model di regressione o predittivi per i materiali.
    4. Verifica le previsioni rispetto ai dati sperimentali esistenti sulle leghe.
  • Contenuti per App Didattiche

    Popolamento di tavole periodiche interattive per studenti di chimica con dati sottoposti a revisione paritaria.

    1. Estrai numeri atomici, simboli e descrizioni degli elementi.
    2. Estrai il contesto storico e i dettagli della scoperta.
    3. Organizza i dati per gruppo periodico e blocco.
    4. Integrali in un'interfaccia utente con strutture cristalline visuali.
  • Analisi delle Tendenze Chimiche

    Visualizzazione delle tendenze periodiche come l'energia di ionizzazione o il raggio atomico attraverso periodi e gruppi.

    1. Raccogli i dati sulle proprietà di ogni elemento in ordine numerico.
    2. Categorizza gli elementi nei rispettivi gruppi.
    3. Usa librerie grafiche per visualizzare le tendenze.
    4. Identifica e analizza i punti dati anomali in blocchi specifici.
  • Gestione dell'Inventario di Laboratorio

    Popolamento automatico dei sistemi di gestione chimica con dati sulla sicurezza fisica e sulla densità.

    1. Mappa l'elenco dell'inventario interno con le voci di WebElements.
    2. Estrai dati su densità, rischi di stoccaggio e punti di fusione.
    3. Aggiorna il database centralizzato del laboratorio tramite API.
    4. Genera avvisi di sicurezza automatizzati per gli elementi ad alto rischio.
Piu di semplici prompt

Potenzia il tuo workflow con l'automazione AI

Automatio combina la potenza degli agenti AI, dell'automazione web e delle integrazioni intelligenti per aiutarti a fare di piu in meno tempo.

Agenti AI
Automazione web
Workflow intelligenti

Consigli Pro per lo Scraping di WebElements

Consigli esperti per estrarre con successo i dati da WebElements.

Rispetta il Crawl-delay

1 specificato nel file robots.txt del sito.

Usa il Numero Atomico come chiave primaria per la coerenza del database.

Estrai i dati dalle sottopagine 'history' e 'compounds' per ottenere un dataset completo per ogni elemento.

Concentrati sui selettori basati su tabelle, poiché la struttura del sito è molto tradizionale e stabile.

Verifica i dati rispetto agli standard IUPAC se utilizzati per ricerche critiche.

Memorizza i valori numerici come densità o punti di fusione come float per un'analisi più semplice.

Testimonianze

Cosa dicono i nostri utenti

Unisciti a migliaia di utenti soddisfatti che hanno trasformato il loro workflow

Jonathan Kogan

Jonathan Kogan

Co-Founder/CEO, rpatools.io

Automatio is one of the most used for RPA Tools both internally and externally. It saves us countless hours of work and we realized this could do the same for other startups and so we choose Automatio for most of our automation needs.

Mohammed Ibrahim

Mohammed Ibrahim

CEO, qannas.pro

I have used many tools over the past 5 years, Automatio is the Jack of All trades.. !! it could be your scraping bot in the morning and then it becomes your VA by the noon and in the evening it does your automations.. its amazing!

Ben Bressington

Ben Bressington

CTO, AiChatSolutions

Automatio is fantastic and simple to use to extract data from any website. This allowed me to replace a developer and do tasks myself as they only take a few minutes to setup and forget about it. Automatio is a game changer!

Sarah Chen

Sarah Chen

Head of Growth, ScaleUp Labs

We've tried dozens of automation tools, but Automatio stands out for its flexibility and ease of use. Our team productivity increased by 40% within the first month of adoption.

David Park

David Park

Founder, DataDriven.io

The AI-powered features in Automatio are incredible. It understands context and adapts to changes in websites automatically. No more broken scrapers!

Emily Rodriguez

Emily Rodriguez

Marketing Director, GrowthMetrics

Automatio transformed our lead generation process. What used to take our team days now happens automatically in minutes. The ROI is incredible.

Jonathan Kogan

Jonathan Kogan

Co-Founder/CEO, rpatools.io

Automatio is one of the most used for RPA Tools both internally and externally. It saves us countless hours of work and we realized this could do the same for other startups and so we choose Automatio for most of our automation needs.

Mohammed Ibrahim

Mohammed Ibrahim

CEO, qannas.pro

I have used many tools over the past 5 years, Automatio is the Jack of All trades.. !! it could be your scraping bot in the morning and then it becomes your VA by the noon and in the evening it does your automations.. its amazing!

Ben Bressington

Ben Bressington

CTO, AiChatSolutions

Automatio is fantastic and simple to use to extract data from any website. This allowed me to replace a developer and do tasks myself as they only take a few minutes to setup and forget about it. Automatio is a game changer!

Sarah Chen

Sarah Chen

Head of Growth, ScaleUp Labs

We've tried dozens of automation tools, but Automatio stands out for its flexibility and ease of use. Our team productivity increased by 40% within the first month of adoption.

David Park

David Park

Founder, DataDriven.io

The AI-powered features in Automatio are incredible. It understands context and adapts to changes in websites automatically. No more broken scrapers!

Emily Rodriguez

Emily Rodriguez

Marketing Director, GrowthMetrics

Automatio transformed our lead generation process. What used to take our team days now happens automatically in minutes. The ROI is incredible.

Correlati Web Scraping

Domande frequenti su WebElements

Trova risposte alle domande comuni su WebElements